# metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## Jing-Min Shi,\* Zhe Liu, Jian-Jun Lu and Lian-Dong Liu

Department of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China

Correspondence e-mail: shijingmin@beelink.com

#### **Key indicators**

Single-crystal X-ray study T = 293 K Mean  $\sigma$ (C–C) = 0.008 Å R factor = 0.030 wR factor = 0.075 Data-to-parameter ratio = 18.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# Diiodidobis(4-methylpyridine N-oxide-kO)zinc(II)

The title mononuclear complex,  $[Zn(I)_2(C_6H_7NO)_2]$ , lies on a special position of site symmetry 2. The Zn atom is coordinated by two I and two O atoms in a tetrahedral geometry. There is a  $\pi$ - $\pi$  stacking interaction of the 4-methylpyridine *N*-oxide units.

### Comment

In the title molecular complex, (I), (Fig. 1), the Zn atom is coordinated by two I atoms and the O atoms from two 4-methylpyridine N-oxide ligands. Atom Zn1 lies on a twofold axis in a distorted tetrahedral environment. The 4-methylpyridine N-oxide units are stacked over each other at a distance of about 3.66 Å. Such  $\pi$ - $\pi$  stacking causes the molecules to pack as columns along the b axis.



## **Experimental**

4-Methylpyridin *N*-dioxide (0.0625 g, 0.573 mmol) was added to an aqueous solution (10 ml) containing  $Zn(ClO_4)_2 \cdot 6H_2O$  (0.1035 g, 0.278 mmol) and NaI (0.0870 g, 0.580 mmol). Colourless crystals of (I) were obtained after the solution was allowed to stand at room temperature for three weeks.

| Crystal data                           |                                           |
|----------------------------------------|-------------------------------------------|
| $[Zn(I)_2(C_6H_7NO)_2]$                | $D_x = 2.052 \text{ Mg m}^{-3}$           |
| $M_r = 537.42$                         | Mo $K\alpha$ radiation                    |
| Monoclinic, C2/c                       | Cell parameters from 1828                 |
| a = 19.385 (5)  Å                      | reflections                               |
| $b = 7.5134 (19) \text{\AA}$           | $\theta = 2.6-26.0^{\circ}$               |
| c = 14.859 (4) Å                       | $\mu = 4.96 \text{ mm}^{-1}$              |
| $\beta = 126.487 \ (3)^{\circ}$        | T = 293 (2) K                             |
| V = 1739.9 (8) Å <sup>3</sup>          | Prism, colourless                         |
| Z = 4                                  | $0.21 \times 0.12 \times 0.09 \text{ mm}$ |
| Data collection                        |                                           |
| Bruker SMART area-detector             | 1597 independent reflections              |
| diffractometer                         | 1371 reflections with $I > 2\sigma(I)$    |
| $\varphi$ and $\omega$ scans           | $R_{\rm int} = 0.029$                     |
| Absorption correction: multi-scan      | $\theta_{\rm max} = 25.5^{\circ}$         |
| (SADABS; Sheldrick, 1996)              | $h = -23 \rightarrow 20$                  |
| $T_{\min} = 0.406, \ T_{\max} = 0.637$ | $k = -9 \rightarrow 8$                    |
| 4279 measured reflections              | $l = -17 \rightarrow 17$                  |

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved Received 22 March 2005

Accepted 6 April 2005

Online 16 April 2005

#### Refinement

| Refinement on $F^2$             | H-atom parameters constrained                            |
|---------------------------------|----------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.030$ | $w = 1/[\sigma^2(F_o^2) + (0.037P)^2]$                   |
| $mR(F^2) = 0.075$               | where $P_o(E_o^2 + 2E_o^2)/2$                            |
| $WR(F_{-}) = 0.075$             | where $P = (F_o + 2F_c)/5$                               |
| S = 1.04                        | $(\Delta/\sigma)_{\text{max}} = 0.001$                   |
| 1597 reflections                | $\Delta \phi = 0.59 \text{ e} \text{ Å}^{-3}$            |
| 88 parameters                   | $\Delta \rho_{\rm min} = -0.49 \text{ e} \text{ Å}^{-3}$ |

### Table 1

Selected geometric parameters (Å, °).

| Zn1-O1                                                          | 1.992 (3)               | Zn1–I1                                                               | 2.5399 (6              |
|-----------------------------------------------------------------|-------------------------|----------------------------------------------------------------------|------------------------|
| $\begin{array}{c} O1 - Zn1 - O1^i \\ O1 - Zn1 - I1 \end{array}$ | 102.7 (2)<br>108.34 (9) | $\begin{array}{c} O1{-}Zn1{-}I1^{i}\\ I1{-}Zn1{-}I1^{i} \end{array}$ | 108.00 (9<br>120.11 (3 |

Symmetry code: (i) -x + 1, y,  $-z + \frac{3}{2}$ .

All H atoms were placed in calculated positions and included in the final cycles of refinement using a riding model (C-H = 0.93 Å for aromatic H atoms and 0.96 Å for methyl H atoms);  $U_{\rm iso}({\rm H}) =$  $1.2U_{\rm eq}({\rm C})$  for aromatic H atoms and  $1.5U_{\rm eq}({\rm C})$  for methyl H atoms.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 2001); software used to prepare material for publication: *SHELXTL*.

The authors thank the Natural Science Foundation of China (grant No. 20271043) and the Natural Science Foundation of



#### Figure 1

A view of complex (I), with the atom-numbering scheme, showing 30% probability displacement ellipsoids [symmetry code: (i) 1 - x, y,  $\frac{3}{2} - z$ ]. H atoms are shown as small spheres of arbitary radii.

Shandong Province of China (grant No. Y2002B10) for support.

#### References

- Bruker (1997). *SMART* (Version 5.6) and *SAINT* (Version 5. A06). Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.