Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jing-Min Shi,* Zhe Liu, Jian-Jun Lu and Lian-Dong Liu

Department of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China

Correspondence e-mail:
shijingmin@beelink.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.030$
$w R$ factor $=0.075$
Data-to-parameter ratio $=18.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Diiodidobis(4-methylpyridine \boldsymbol{N}-oxide- $\boldsymbol{\kappa} \mathrm{O}$)zinc(II)

The title mononuclear complex, $\left[\mathrm{Zn}(\mathrm{I})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]$, lies on a special position of site symmetry 2 . The Zn atom is coordinated by two I and two O atoms in a tetrahedral geometry. There is a $\pi-\pi$ stacking interaction of the 4-methylpyridine N-oxide units.

Comment

In the title molecular complex, (I), (Fig. 1), the Zn atom is coordinated by two I atoms and the O atoms from two 4-methylpyridine N-oxide ligands. Atom Zn 1 lies on a twofold axis in a distorted tetrahedral environment. The 4-methylpyridine N-oxide units are stacked over each other at a distance of about $3.66 \AA$. Such $\pi-\pi$ stacking causes the molecules to pack as columns along the b axis.

Experimental

4-Methylpyridin N-dioxide ($0.0625 \mathrm{~g}, 0.573 \mathrm{mmol}$) was added to an aqueous solution (10 ml) containing $\mathrm{Zn}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.1035 \mathrm{~g}$, $0.278 \mathrm{mmol})$ and $\mathrm{NaI}(0.0870 \mathrm{~g}, 0.580 \mathrm{mmol})$. Colourless crystals of (I) were obtained after the solution was allowed to stand at room temperature for three weeks.

Crystal data

$\left[\mathrm{Zn}(\mathrm{I})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]$	$D_{x}=2.052 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=537.42$	Mo $K \alpha$ radiation
Monoclinic, C2/c	Cell parameters from 1828
$a=19.385$ (5) A	reflections
$b=7.5134$ (19) \AA	$\theta=2.6-26.0^{\circ}$
$c=14.859$ (4) \AA	$\mu=4.96 \mathrm{~mm}^{-1}$
$\beta=126.487$ (3) ${ }^{\circ}$	$T=293$ (2) K
$V=1739.9$ (8) \AA^{3}	Prism, colourless
$Z=4$	$0.21 \times 0.12 \times 0.09 \mathrm{~mm}$
Data collection	
Bruker SMART area-detector diffractometer	1597 independent reflections 1371 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.029$
Absorption correction: multi-scan	$\theta_{\text {max }}=25.5^{\circ}$
(SADABS; Sheldrick, 1996)	$h=-23 \rightarrow 20$
$T_{\text {min }}=0.406, T_{\text {max }}=0.637$	$k=-9 \rightarrow 8$
4279 measured reflections	$l=-17 \rightarrow 17$

Received 22 March 2005
Accepted 6 April 2005
Online 16 April 2005

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.075$
$S=1.04$
1597 reflections
88 parameters

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.037 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.59 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.49 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{Zn} 1-\mathrm{O} 1$	$1.992(3)$	$\mathrm{Zn} 1-\mathrm{I} 1$	$2.5399(6)$
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{O} 1^{\mathrm{i}}$	$102.7(2)$	$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{I} 1^{\mathrm{i}}$	$108.00(9)$
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{I} 1$	$108.34(9)$	$\mathrm{I} 1-\mathrm{Zn} 1-1^{\mathrm{i}}$	$120.11(3)$

Symmetry code: (i) $-x+1, y,-z+\frac{3}{2}$.

All H atoms were placed in calculated positions and included in the final cycles of refinement using a riding model $(\mathrm{C}-\mathrm{H}=0.93 \AA$ for aromatic H atoms and $0.96 \AA$ for methyl H atoms); $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for aromatic H atoms and $1.5 U_{\mathrm{eq}}(\mathrm{C})$ for methyl H atoms.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2001); software used to prepare material for publication: SHELXTL.

The authors thank the Natural Science Foundation of China (grant No. 20271043) and the Natural Science Foundation of

Figure 1

A view of complex (I), with the atom-numbering scheme, showing 30% probability displacement ellipsoids [symmetry code: (i) $1-x, y, \frac{3}{2}-z$]. H atoms are shown as small spheres of arbitary radii.

Shandong Province of China (grant No. Y2002B10) for support.

References

Bruker (1997). SMART (Version 5.6) and SAINT (Version 5. A06). Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Sheldrick, G. M. (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.

